Selecting a Set of Rail Routes to Yucca Mountain

Paul E. Johnson Oak Ridge National Laboratory February 1, 2007

Prepared by
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, Tennessee 37831-6285
managed by
UT-Battelle, LLC
for the U.S. Department of Energy
under contract DE-AC05-00OR22725

Purpose

- To show how to develop a set of rail routes from a reactor site to the Caliente Corridor entry point to Yucca Mountain
 - H. B. Robinson site used for this example
- Show how, by selectively blocking critical locations, the TRAGIS model can develop a variety of routes
- Show different statistics, both within and outside of TRAGIS, to compare routes

Calculating Rail Routes with TRAGIS

- Routes calculated with both the "manifest" and "dedicated" route types
- Several nodes initially blocked
 - UP through Streator, IL
 - UP trackage rights on the BNSF line between Chicago and Kansas City is limited to intermodal trains
 - Rockwell Street, IL
 - Diverts traffic from near downtown Chicago

Blue Route from Robinson to the Caliente Corridor

- This is the standard "manifest route" type
- TRAGIS attempts to
 - Maximize the use of high density track
 - Minimize the number of rail carriers
 - Originating carrier given a preference
- CSXT, TRRA, and UP
- Interchanges occur in St. Louis area and involve a terminal RR (TRRA)

Orange Route from Robinson to the Caliente Corridor

- The "dedicated train" route type used to calculate this route
 - No preference given to originating carrier
 - Transfer penalties reduced
- CSXT, NS, and UP
- Interchanges occur at
 - Charlotte
 - Kansas City

Brown Route from Robinson to the Caliente Corridor

- Back to "manifest train" route type
- Marysville, KS blocked to divert route from Nebraska
- This sends the route through Colorado into Utah
- CSXT, TRRA, and UP with interchanges in the St. Louis area

Green Route from Robinson to the Caliente Corridor

- Manifest route type used
- Dotsero, CO blocked to divert route from western Colorado
- Route passes through eastern Kentucky coal fields to northern Ohio, then west through Chicago
- CSXT, IHB, and UP
- Interchanges occur in the Chicago area and involve a terminal RR (IHB)

Red Route from Robinson to the Caliente Corridor

- Manifest route type used
- Clinton, IA and Hiawatha, KS blocked to divert route from UP line across lowa
- This route heads to Denver then across southern Wyoming
- CSXT, TRRA, and UP with interchanges in the St. Louis area

Cyan Route from Robinson to the Caliente Corridor

- Manifest route type used
- Kit Carson, CO blocked to divert route from passing through most of Colorado
- Polo, MO blocked to divert route from heading north from Kansas City
- This route is very similar to the Green Route, but follows a BNSF line from Chicago to Council Bluffs
- CSXT, IHB, BNSF, and UP
- Interchanges occur in Chicago and Council Bluffs

Purple Route from Robinson to the Caliente Corridor

- Manifest route type used
- Lund, UT blocked to divert route to a southern path
- This route uses CSXT to New Orleans then west on UP
- Route passes through Houston, TX and San Bernardino, CA
- CSXT, NOPB, and UP with interchanges in the New Orleans area

Grey Route from Robinson to the Caliente Corridor

- No further nodes
 blocked, but the
 "dedicated train" route
 type is active
- This route passes through Memphis, Amarillo, and Flagstaff
- CSXT, NS, BNSF, and UP
- Interchanges at Atlanta, Birmingham, and Daggett, CA

Other Routes Are Possible

- Several permutations of the Grey Route (crossing the Mississippi River at Memphis) can include
 - Remain on CSXT between Robinson and Birmingham
 - This would remove one carrier, but increase distance by 80 miles
 - Use BNSF between Birmingham and Kansas City rather than heading west to California
 - This would reduce the distance by 213 additional miles

Double Track Single Bore Tunnels

- Concerns have been expressed about SNF shipments through double track single bore tunnels
 - OT-55 provides an administrative control
- Possible double track single bore tunnels are shown
- Only one such tunnel on one route in this set of routes from Robinson

Comparison of Route Distances

- The sequence of routes generally increase in mileage
- Brown is the shortest
- Purple is the longest, at 16.9% longer than Brown
 - For most of the commercial and DOE sites, routes across the southern U.S. are longer than those passing through WY

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Estimated Travel Time vs. Distance

- Relationship between distance and travel time is not direct
- Green Route has lowest estimated travel time
- Grey Route has the highest, 20.8% more

Comments on Travel Time

- TRAGIS estimates travel time based on traffic density of a line
- This usually works well for most routes
- Exceptions are
 - The Green and Cyan routes run between Bostic, NC, and Ashland, KY
 - This line has relatively high traffic density (primarily coal), but passes through mountainous terrain with considerable curvature and grades
 - The Brown Route through western Colorado is somewhat similar
- Improved travel time estimate could be gained by adding Track Class to the rail network and use it to assist with travel time estimation

Comparison of Track Class for the Green and Red Routes

- Green Route has more Class 2 and 3 mileage than the Red Route
- Green Route has significantly more Class 5 track
- There will always be some miles of Class 2 or 3 track
- This data is not currently in the network

Number of Railroads and States

- Terminal railroad used on all routes except for Orange and Grey
- Purple Route crosses the fewest states
- The Blue, Green, and Cyan routes cross the most states

Number of Urbanized Areas Crossed by Routes

- Census defined urbanized areas
- Cyan Route has the fewest urbanized areas
- Purple has the most, with 6 areas over a million people

Population Within 800 and 2,500 m Buffer Either Side of Routes

- Purple Route has the highest population
- Grey Route has the lowest
- Cyan Route has the fewest urbanized areas, but has comparable population to the Red Route, which has the second most urbanized areas

Tribal Land Along Routes

- Only three routes cross tribal lands
- The Grey and Purple routes, both which cross the southwestern portion of the country, cross the most tribal land

Passenger Operations Along Routes

- Nearly two-thirds of the Purple Route currently hosts Amtrak operation
- Amtrak has operations over 30% of the Grey and Brown routes
- Commuter operations exist only over small portions of the Green and Cyan routes (in the Chicago area)

Traffic Density Along Routes

- The Green and Cyan routes have the highest mileage over high density lines
- The Brown Route has the lowest mileage over high density lines
- The low density portion of the routes occurs between Robinson and Columbia, SC

Track Characteristics Along Routes

- "Dark Track" does not have any signals
- Routes have one or two significant segments with no signals
- Green and Cyan routes have the most distance of double track
- The double track portions of the top four routes have high priority traffic that may be disrupted by DOE SNF trains

Concluding Remarks

- Most of the data shown are in the rail network, but some of the attributes are not distributed with the TRAGIS model due to proprietary concerns
- The objective function in TRAGIS mimics actual railroad operations by considering distance weighted by classes of traffic density and minimizing the number of rail companies

